UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division: Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5 Mental Methods

Using place value

Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$
e.g. Know what 0.1 more than 0.51 is

10 s	1 s	0.1 s	0.01 s
	0	5	1

Partitioning

e.g. $2 \cdot 4+5 \cdot 8$ as $2+5$ and $0 \cdot 4+0 \cdot 8$ and combine the totals: $7+1 \cdot 2=8 \cdot 2$

$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$	$0-6$	$0 \cdot 7$	0.8	$0 \cdot 9$	1
$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 5$	$1 \cdot 6$	$1 \cdot 7$	$1 \cdot 8$	$1 \cdot 9$	2
$2 \cdot 1$	$2 \cdot 2$	$2 \cdot 3$	$2 \cdot 4$	$2 \cdot 5$	$2 \cdot 6$	$2 \cdot 7$	$2 \cdot 8$	$2 \cdot 9$	3
$3 \cdot 1$	$3 \cdot 2$	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 5$	$3 \cdot 6$	$3 \cdot 7$	$3 \cdot 8$	$3 \cdot 9$	4
$4 \cdot 1$	$4 \cdot 2$	$4 \cdot 3$	$4 \cdot 4$	$4 \cdot 5$	$4 \cdot 6$	$4 \cdot 7$	$4 \cdot 8$	$4 \cdot 9$	5
$5 \cdot 1$	$5 \cdot 2$	$5 \cdot 3$	$5 \cdot 4$	$5 \cdot 5$	$5 \cdot 6$	$5 \cdot 7$	$5 \cdot 8$	$5 \cdot 9$	6
$6 \cdot 1$	$6 \cdot 2$	$6 \cdot 3$	$6 \cdot 4$	$6 \cdot 5$	$6 \cdot 6$	$6 \cdot 7$	$6 \cdot 8$	$6 \cdot 9$	7
$7 \cdot 1$	$7 \cdot 2$	$7 \cdot 3$	$7 \cdot 4$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 7$	$7 \cdot 8$	$7 \cdot 9$	8
$8 \cdot 1$	$8 \cdot 2$	$8 \cdot 3$	$8 \cdot 4$	$8 \cdot 5$	$8 \cdot 6$	$8 \cdot 7$	$8 \cdot 8$	$8 \cdot 9$	9
$9 \cdot 1$	$9 \cdot 2$	$9 \cdot 3$	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 6$	$9 \cdot 7$	$9 \cdot 8$	$9 \cdot 9$	10

Year 5 Written Methods

Expanded column addition for money leading to compact column addition for adding several amounts of money
e.g. £14.64 + £28.78 + £12.26
N.B. It is essential that children use $£ \underline{O R p} \mathbf{p}$ - not both.

$£ 14$	$60 p$	$4 p$
$£ 28$	$70 p$	$8 p$
$+£ 12$	$20 p$	$6 p$
$£ 1$	$10 p$	
$£ 55$	$60 p$	$8 p$

Compact column addition to add pairs of 5-digit numbers Continue to use column addition to add towers of several larger numbers
Use compact addition to add decimal numbers with up to 2 decimal places
N.B. Digits carried go ABOVE not below the line.
e.g. $15 \cdot 68+27.86$

$$
\begin{array}{r}
15 \cdot 68 \\
+\quad 27.86 \\
11.1 \\
\hline 43 \cdot 54
\end{array}
$$

Add related fractions

$$
\text { e.g. } 3 / 4+1 / 8=7 / 8
$$

Year 5 Mental Methods

Year 5 Written Methods

Counting on

Add two decimal numbers by adding the 1 s , then the $0.1 \mathrm{~s} / 0.01 \mathrm{~s}$
e.g. $5.72+3.05$ as $5.72+3(8.72)+0.05=8.77$

Add near multiples of 1
e.g. $6.34+0.99$
e.g. $5 \cdot 63+0.9$

Count on from large numbers
e.g. $6834+3005$ as $9834+5$
¢ Using number facts
Number bonds to 1 and to the next whole number
e.g. $5 \cdot 7+0.3$
e.g. $0 \cdot 4+0.6$

Add to the next 10 from a decimal number

$$
\text { e.g. } 7 \cdot 8+2 \cdot 2=10
$$

Year 5 Mental Methods

Taking away

Use place value to subtract decimals
e.g. $4.58-0.08$
e.g. 6.26-0.2

Take away multiples of powers of 10
e.g. 15672-300
e.g. $4.82-2$ e.g. $2.71-0.5$
e.g. $4.68-0.02$

Partitioning or counting back
e.g. 3964-1051
e.g. 5.72-2.01

Subtract near multiples of $1,10,100,1000,10000$ or $£ 1$
e.g. 86456 - 9999
e.g. 3.58-1.99

Counting up

Find a difference between two numbers by counting up from the smaller to the larger
e.g. £12.05-£9.59
e.g. 2009-869

Year 5 Written Methods

Compact column subtraction for numbers with up to 5 digits e.g. 16324 - 8516

Continue to use counting up subtraction for subtractions involving money, including finding change
e.g. $£ 50-£ 28 \cdot 76$

Use counting up subtraction to subtract decimal numbers

Subtract related fractions

$$
\text { e.g. } 3 / 4-1 / 8=5 / 8
$$

NB Counting up subtraction provides a default method for ALL children

	Year 5 Mental Methods	Year 5 Mental Methods
	Find change using shopkeepers' addition e.g. Buy a toy for $£ 6.89$ using $£ 10.00$ Find a difference between two amounts of money by counting up Using number facts Derived facts from number bonds to 10 and 100 e.g. $2-0.45$ using $45+55=100$ e.g. $3-0.86$ using $86+14=100$ Number bonds to £1, £10 and £100 e.g. $£ 4.00-£ 3.86$ e.g. $£ 100-£ 66$ using $66+34=100$	

Year 5 Mental Methods

Doubling and halving
Double amounts of money using partitioning
e.g. double $£ 6.73$

Use doubling and halving as a strategy in multiplying by
$2,4,8,5$ and 20
e.g. 58×5 is half of $58 \times 10(580)=290$

Grouping
Multiply whole numbers and decimals by 10, 100, 1000
e.g. $3.4 \times 100=340$

Use partitioning to multiply 'friendly' 2 - and 3 -digit numbers
by 1 -digit numbers
e.g. 402×6 as $400 \times 6(2400)$ and $2 \times 6(12)=2412$

Use partitioning to multiply decimal numbers by 1 -digit numbers e.g. 4.5×3 as $4 \times 3(12)$ and $0.5 \times 3(1.5)=13.5$

Multiply near multiples by rounding e.g.
32×29 as $(32 \times 30)-32=928$

Year 5 Written Methods

Short multiplication of 2-, 3- and 4-digit numbers by 1 -digit numbers e.g. 435×8

$$
\begin{array}{r}
435 \\
\times \quad 8 \\
24 \\
\hline 3480
\end{array}
$$

Long multiplication of 2-, 3-and 4-digit numbers by 'teen' numbers e.g. 48×16

$$
\begin{array}{r}
48 \\
\times 16 \\
\hline 480 \\
288 \\
1 \\
\hline 768
\end{array}
$$

Year 5 Mental Methods

Doubling and halving

Halve amounts of money using partitioning
e.g. half of $£ 14.84$ is half of $£ 14$ ($£ 7$) plus half of $84 p(42 p)$

Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20 e.g. $115 \div 5$ as double $115(230) \div 10=23$

Division

Grouping
Divide numbers by 10, 100, 1000 to obtain decimal answers with up to 3 decimal places
e.g. $340 \div 100=3.4$

Using number facts
Use division facts from the times-tables up to 12×12 to divide multiples of powers of 10 of the divisor
e.g. $3600 \div 9$ using $36 \div 9$

Know square numbers and cube numbers

Year 5 Written Methods

Use a written version of a mental strategy to divide 3-digit numbers by 1-digit numbers
e.g. $186 \div 6$ as 30×6 (180) and 1×6 (6)

Brainstorm first, e.g. $1 \times 6=6,2 \times 6=12$, etc

	31	
	$6 \longdiv { 1 8 6 }$	
$1 \times 6=6$ $2 \times 6=12$	- 180	30×6
$3 \times 6=18$ $4 \times 6=24$	6	
$5 \times 6=30$ $10 \times 6=60$	-6	1×6
$20 \times 6=120$ $30 \times 6=180$	0	31

e.g. $326 \div 6$ as 50×6 (300) and 4×6 (24), remainder 2

$$
\begin{aligned}
& 1 \times 6=6 \\
& 2 \times 6=12 \\
& 3 \times 6=18 \\
& 4 \times 6=24 \\
& 5 \times 6=30 \\
& 50 \times 6=308
\end{aligned}
$$

54 R 2	
$6 \longdiv { 3 2 6 }$	
-300	50×6
26	
-24	$4 \times$
2	54 R 2

