UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division: Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 6 Mental Methods

Using place value

Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}, 0.001 \mathrm{~s}$
e.g. Know what 0.001 more than 6.725 is

Partitioning

e.g. $9.54+3.23$ as $9+3,0.5+0.2$ and $0.04+0.03$, to give 12.77

Counting on

Add two decimal numbers by adding the 1 s , then the
$0.1 \mathrm{~s} / 0.01 \mathrm{~s} / 0.001 \mathrm{~s}$
e.g. $6 \cdot 314+3.006$ as $6 \cdot 314+3(9 \cdot 314)+0.006=9 \cdot 32$

Add near multiples of
e.g. $6.345+0.999$
e.g. $5 \cdot 673+0.9$

Count on from large numbers e.g. $16375+12003$
as $28375+3$

Using number facts
Number bonds to 1 and to the next multiple of 1
e.g. $0.63+0.37$
e.g. $2.355+0.645$

Add to the next 10 e.g. $4 \cdot 62+5 \cdot 38$

Year 6 Written Methods

Compact column addition for adding several large numbers and decimal numbers with up to 2 decimal places
Compact column addition with money
e.g. $£ 14.64+£ 28.78+£ 12.26$

$$
\begin{array}{r}
£ 14.64 \\
+£ 28.78 \\
£ 12.26 \\
11.1 \\
\hline £ 55.68 \\
\hline
\end{array}
$$

Add unlike fractions, including mixed numbers

$$
\begin{aligned}
& \text { e.g. } 1 / 4+2 / 3=11 / 12 \\
& \text { e.g. } 21 / 4+11 / 3=37 / 12
\end{aligned}
$$

Year 6 Mental Methods

Year 6 Written Methods

Taking away

Use place value to subtract decimals e.g.
7.782-0.08
e.g. 16.263-0.2

Take away multiples of powers of 10 e.g.
132 956-400
e.g. 686 109-40 000
e.g. $7.823-0.5$

Partitioning or counting back e.g.
3964-1051
e.g. 5.72-2.01

Subtract near multiples of powers of 10 e.g.
360 078-99 998
e.g. $12.831-0.99$

Counting up

Find a difference between two decimal numbers by counting up from the smaller to the larger
e.g. 1.2-0.87

Compact column subtraction for large
numbers e.g. 34 685-16458

2	14		7	15
$\not 8$	4	6	8	8
-1	6	4	5	8
1	8	2	2	7

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use counting up subtraction when dealing with money
e.g. £100- £78.56
e.g. £45.23- £27.57

Subtract unlike fractions, including mixed numbers

$$
\begin{aligned}
& \text { e.g. } 3 / 4-1 / 3=5 / 12 \\
& \text { e.g. } 23 / 4-11 / 3=15 / 12
\end{aligned}
$$

NB Counting up subtraction provides a default method for ALL children, however, compact column subtraction (decomposition) should be the focus method for teaching.

Year 6 Mental Methods
Year 6 Written Methods

Using number facts

Derived facts from number bonds to 10 and 100 e.g.
$0.1-0.075$ using $75+25=100$
e.g. $5-0.65$ using $65+35=100$

Number bonds to $£ 1, £ 10$ and $£ 100$ e.g.
£7.00-£4.37
e.g. $£ 100-£ 66 \cdot 20$ using $20 p+80 p=£ 1$ and $£ 67+£ 33=£ 100$

Year 6 Mental Methods

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36.73

Use doubling and halving as strategies in mental multiplication

Grouping

Multiplication
Use partitioning as a strategy in mental multiplication, as
appropriate
e.g. 3060×4 as $3000 \times 4(12000)$ and 60×4 (240) $=12240$
e.g. 8.4×8 as $8 \times 8(64)$ and $0.4 \times 8(3 \cdot 2)=67.2$

Use factors in mental multiplication
e.g. 421×6 as 421×3 (1263) doubled $=2526$
e.g. 3.42×5 as half of $3.42 \times 10=17.1$

Multiply decimal numbers using near
multiples by rounding e.g. 4.3×19 as
$(4.3 \times 20)-4.3=81.7$

Using number facts

Use times-tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to 2 decimal places e.g. $6 \times 4=24$ and $0.06 \times 4=0.24$

Year 6 Written Methods

Short multiplication of 2-, 3- and 4-digit numbers by 1 -digit numbers e.g. 3743×6

3743
$\times \quad 6$
421
22458

Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers

456
$\times \quad 38$
13^{16180}
$364^{4} 8$
11
17328

\qquad

Year 6 Mental Methods

Year 6 Written Methods

Short multiplication of decimal numbers using $\times 100$ and $\div 100$
e.g. 13.72×6 as $(1372 \times 6) \div 100=82.32$

Short multiplication of money
e.g. £13.72 $\times 6$

```
£1372
\times
6
    241
£ 8 2 3 2
```

Grid multiplication of numbers with up to 2 decimal places by 1 digit numbers
e.g. 6.76 $\times 4$

x	6	0.7	0.06
4	24	2.8	0.24

Multiply simple pairs of proper fractions
e.g. $1 / 2 \times 1 / 4=1 / 8$

NB Grid multiplication provides a default method for children but short multiplication should be the main method taught.

Year 6 Mental Methods

Doubling and halving

Halve decimal numbers with up to 2 places using partitioning e.g. half of 36.86 is half of 36 (18) plus half of $0.86(0.43)$

Use doubling and halving as strategies in mental division

Grouping

\circ
0
0
0
0

Use the 10th, 20th, 30th, \ldots. or 100th, 200th, 300th ... multiples of the divisor to divide large numbers
e.g. $378 \div 9$ as 40×9 (360) and 2×9 (18), remainder 2

Use tests for divisibility
e.g. 135 divides by 3 , as $1+3+5=9$ and 9 is in the $\times 3$ table

Using number facts

Use division facts from the times-tables up to 12×12 to divide decimal numbers by 1 -digit numbers
e.g. $1 \cdot 17 \div 3$ is $1 / 100$ of $117 \div 3$ (39)

Know tests of divisibility for numbers divisible by 2, 3, 4, 5, 9, 10 and 25

Year 6 Written Methods

Before pupils can begin to use the short division method there are a number of skills and concepts that need to have been developed:

- recall fluently multiplication facts to 12×12, recognise multiples
- visualise and understand how a four-digit number can be partitioned and recombined into multiples of 1000, 100, 10 and 1 with both concrete and abstract representations. (i.e. base 10 (concrete), place value counters or arrow cards)
- visualise the relative quantity of the numbers
- know the value of a digit because of its position in a number
- understand the effect of multiplying by 10,100 and 1000
- understand that multiplication and division are inverses and use this relationship to estimate and check answers
- decide when it is more efficient to calculate mentally
- understand the concept of a remainder after division
- understand that division is (left) distributive over addition, $e g(a+b) \div c=(a \div c)+(b \div c)$

Short division

$98 \div 7$ becomes

$$
\begin{gathered}
1 \quad 4 \\
7 \begin{array}{|cc}
2 \\
7 & 8
\end{array}
\end{gathered}
$$

Answer: 14
$432 \div 5$ becomes

$$
\begin{gathered}
8 \longdiv { 4 3 ^ { 3 } 2 } \\
5 \underbrace{8}
\end{gathered}
$$

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Year 6 Written Methods

Long division of 3 - and 4 -digit numbers by 2 -digit numbers e.g. $4176 \div 13$

Brainstorm first, e.g. $1 \times 6=6,2 \times 6=12$, etc

321 R 3		
$1 \times 13=13$	134176	
$2 \times 13=26$	- 3900	300×13
$3 \times 13=39$ 4×13		
$4 \times 13=52$	276	
$5 \times 13=65$	260	20×13
$10 \times 13=130$ $20 \times 13=260$	16	
100 $1313=1300$	-13	1×13
边	3	321 R

Express remainders as fractions
e.g. $432 \div 15$ becomes

	$28 \frac{4}{5}$	20×15
$1 \times 15=15$	$1 5 \longdiv { 4 3 2 }$	
2 $\times 15=30$	-300	
$3 \times 15=45$		
$4 \times 15=60$	132	
$5 \times 15=75$ $10 \times 15=150$	-120	8×15
	12	$\overline{28}$ R 12
	$\frac{12}{15}=$	

Give remainders as whole numbers, fractions or decimals
Use place value to divide 1- and 2-place decimals by numbers ≤ 12 e.g. $3.65 \div 5$ as $(365 \div 5) \div 100=0.73$

